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Abstract—All similarity solutions of the laminar natural convection boundary-layer equations for air are
numerically determined for a fixed wall and variable environment temperature. It is found that the positive
M class does not have the singularity found by Merkin for a variable wall and fixed environment
temperature. Solutions of the negative M class for an unstable stratification depend on the position of the
outer edge and are unusable. The similarity solutions for a stable stratification show regions of backflow.
Therefore, the calculation of non-similar solutions of the boundary-layer equations along a heated vertical
plate with a sharp leading edge requires that the solution is known at the end of the plate. The positive M
class provides such a solution for a semi-infinite plate. If the environment temperature becomes equal to
the wall temperature at a finite distance x,, the non-similar solution does not smoothly approach the
negative M class similarity solution close to x,.

1. INTRODUCTION

IF THE CHARACTERISTIC number of the natural con-
vection flow, i.e. the Grashof number, is increased to
infinity, the Navier-Stokes flow along a heated ver-
tical plate becomes identical to the solution of the
boundary-layer equations. If the environment is iso-
thermal and stagnant, a coordinate transformation
exists which simplifies the boundary-layer equations
to ordinary differential equations. The solution of this
system, which is a similarity solution of the boundary-
layer equations, was numerically determined by
Ostrach [1]. If the vertical plate is part of an enclosure,
the environment of the plate (the core of the en-
closure) will not be isothermal, but stratified. This
stratification will be stable: the temperature increases
with height. An unstable stratification is only of theo-
retical interest; it is a solution of the steady Navier—
Stokes equations, but unsteady effects will cause a
transition to a steady solution in which the strati-
fication is broken up.

Semenov [2] derived the system of ordinary differ-
ential equations for all possible distributions of the
wall and environment temperature leading to a simi-
larity solution of the boundary-layer equations. Some
solutions of Semenov’s system are already known in
the literature ; Ostrach [1], giving the solution for a
fixed wall and environment temperature, Sparrow and
Gregg [3], giving part of the class with variable wall
and fixed environment temperature, and Cheese-
wright [4] and Yang e al. [5], giving part of the class
with fixed wall and variable environment temperature.
Recently Merkin [6] found that the similarity solution
for a variable wall and fixed environment temperature
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becomes singular if a critical value of the parameter
describing the wall temperature is exceeded. It is in-
vestigated here whether such a singular behaviour is
also found for a fixed wall and variable environment
temperature. Further, the differential equations for
the new class of similarity solutions are numerically
solved.

Once the similarity solutions have been determined,
it has to be investigated in which part of the boundary
layer they hold. Firstly, the solution must be match-
able with the environment solution : the velocity and
temperature profiles have to be independent of the
position of the far outer edge of the boundary layer.
Secondly, a similarity solution holds for small x (coor-
dinate along the plate), if it is matchable to the solu-
tion in a small region, O(Gr~"?), at the leading edge
of the plate, where boundary-layer equations do not
apply, but Navier—Stokes equations have to be used.
If this is not the case, the similarity solution found
might be the boundary-layer solution for large x. To
check this we also solved the full (non-similar) boun-
dary-layer equations.

When this paper was in preparation, a related paper
by Kulkarni et al. [7) was published. They determined
a similarity solution for a fixed wall temperature and
a linear, stably stratified environment. The authors
claimed to have found a new class of similarity solu-
tions, but this class was already detected by Semenov
[2]. Actually Semenov’s new class is more general,
because the parameter describing the variation of the
environment temperature can be any real number,
whereas it has to be an integer in the description
of Kulkarni et al. The present paper determines the
solutions of the new class for the whole range of
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parameter describing the variation of the
wall and/or environment temperature

N coefficient in the &-coordinate

Nu  Nusselt number,
—xo[0(T— T, (0))/0y]. /AT

p pressure

Pr Prandtl number

s iterative level in the numerical procedure
T temperature

T, constant temperature
characteristic temperature difference,
T,—T.(0)

NOMENCLATURE

f(n) similarity stream function vertical velocity component

F(17) similarity stream function (large » v velocity component perpendicular to the
formulation) plate

g gravitational acceleration X vertical coordinate

g(n) similarity temperature Xo length scale

G(17) similarity temperature (large r y coordinate perpendicular to, and
formulation) beginning at, the plate.

Gr  Grashof number, gBATx] /v?

}? f /, . L L Greek symbols

j gridpoint numbering in the #-direction B coefficient of thermal expansion

m parameter describing whether the n similarity y-coordinate
environment temperature (m = 0) or i similarity y-coordinate (large n
the walll terpperature (m = - 1) is fixed formulation, 7 = |n|"*)

M coefficient in the £-coordinate Ay gridsize in the #-direction

n

v molecular kinematic viscosity

¢ transformed x-coordinate, Mx+ N

P density

¥ stream function.
Superscript

’ differentiation with respect to # (or 7).
Subscripts

w wall condition

(e environment condition.

parameters describing the variation of the strati-
fication. By comparison with a non-similar boundary-
layer calculation we will show that the new similarity
solution for the stable, linear stratification does not
fit in the boundary-layer flow pattern along the heated
vertical plate with a sharp leading edge. This is not
in line with Kulkarni ef al., who suggest agreement
between this similarity solution and some numerical
and experimental results in literature.

2. FLOW EQUATIONS

The Navier-Stokes equations for a laminar, two-
dimensional, steady, incompressible flow are

Ou 61;_0

6x+5_

ou  Ou 1dp *u  0u
u*a;+vé;—~;$+gﬁ(T—Tw)+V<Ex7+é?
W, o 1 2o o
“ox T T T ooy "\ox2 T 52
oT  oT v (8T T 1
u@x+v6y_17r ax? " oyr) M

The Boussinesq approximation has been applied. This
means that the density p is considered constant every-
where, except in the temperature buoyancy term,
where it is replaced by a linear dependence (constant
coefficient of thermal expansion f) on the temperature
difference T—T..

In the case where the characteristic number of
the flow is very large (the Reynolds number in a
forced convection flow, or the Grashof number
Gr = gBATx}/v? in a natural convection flow),
boundary layers appear along fixed walls. In the
boundary layer the Navier—Stokes description can be
simplified to boundary-layer equations

ou 00 _
ox ' dy
du  Ou 1dp o%u

éT 8T v &'T

E+U@=Eé}-{. (2)

u

We are searching for solutions of this system that
describe the natural convection boundary-layer flow
along a heated vertical plate with a sharp leading edge
in a stratified environment
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x=0: wuand T profile specified
y=0: u=0,T=T,(x)
yoo: u=0,T=T,(x). 3)

For special distributions 7,(x) and T, (x) a simi-
larity solution of equations (2) exists. Such a similarity
solution depends only on one coordinate #, instead of
the two independent x—y coordinates. Recently
Semenov [2] has derived the differential equations for
all possible similarity solutions. The temperature is
rewritten as

T = (m+gm)ATE" + T, @
with
T, =(m+1DATE +T,
T, =mATE + T, ©)

n=0: gm=1,

n—>o: g =0,
where T is a constant. The transformed coordinates
in this expression are

E=Mx+N (¢£30)
y= (gﬂAT

V2

1/4
|M|> (Mx+N)®= iy, (6)

-A stream function is introduced as

ATy \ /4
Y= (%%) g 904 £ () 0

which defines the #- and v-velocities as

u

= %‘k = (M)”Z é("'* 1)/2f’
y

|M]
W (gﬂATv2

S\ IMP

1/4
(=14
0x > M

-1 3
x (— i %f) ®)

Substitution of these transformation expressions into
equations (2) yields the following ordinary differential
equations for f and g:

n+1

3
£+ sgn (M) [f—j—ff“— : f’2]+y=0

g~ + Prsgn (M) I:n—?fg’——n(g+m)f'] =0

f=f=0, g=1
g=0. ©)

n=0:
n-oo: f'=0,
Special situations are m = 0, for the non-stratified

environment, and m = —1, for the fixed wall tem-
perature situation. The environment is stably strati-

fied if dT,,/dx > 0, hence mMn > 0. The branch with
sgn (M) = —1 was discovered by Semenov.

Solutions of equations (9) have been determined by
Ostrach [1] (m = 0,sgn (M) = 1, n = 0), Sparrow and
Gregg [3] (m=0, sgn(M) =1, limited n-range),
Cheesewright [4] and Yang et al. [5] (m= —1,
sgn (M) = 1, limited n-range) and Merkin [6] (m = 0,
sgn (M) = 1, whole n-range). No solutions are known
for the whole n-range with m= —1 and for
sgn (M) = —1: these solutions are given here.

3. NUMERICAL METHOD

Two methods to solve the ordinary differential
equations (9) are described: (i) the shooting method
with explicit integration, and (ii) the direct method.
The outer edge of the boundary layer is numerically
taken at the finite distance 7,,. The region 0 < 5 < 1,
is covered with the equidistantly spaced gridpoints 7,
(i=0,1,..., 7).

Method (i) performs an explicit integration from
the wall to the outer edge, finding the solution at j+ 1
from a Taylor expansion around j

., (An)F
b=+ T 80, $=fg (0
k=1 *
where An is the gridsize. The derivatives f*’, g’* and

1

g’ in this expression follow from equations (9). The
remaining derivatives are obtained by Taylor expan-
sions similar to equation (10). The integration can be
started at the wall when the values £(0), /'(0), f”(0),
g(0) and g’(0) are known. The values f(0), f'(0) and
g(0) are given as boundary conditions, but f"'(0)
and g’(0) have to be guessed. Repeated integrations
(shootings) are required to determine f*(0) and g’ (0)
such that the boundary conditions for f” and g at the
outer edge 7, are satisfied. The iterative updating
of f’(0) and ¢’(0) is performed with the Newton—
Raphson method, requiring the numerical evaluation
of

L) )
1 ag;(o) ’ 2 af//(o) s
_09(ns) _ 09(1)
as = ag/(o) L] as = af//(o)‘ (11)

f(0) and g’(0) at the new iterative level s follow from
the old level s—1 according to

f )= 1"""(n)+(g"(0)—g"" ' (0)a,
+UO) - (0))a;
9s) =g (1) + (g7 (0)—g" "' (0)a,
+(O) =T (O)a,. (12)

This Newton—Raphson process converges with a
quadratic speed. The explicit integration (10) turned
out to be very unstable ; small deviations in the solu-
tion for f"*(0) and g*(0) can lead to very large devi-
ations in f"*(n.) and g*(n.)-



150 R. A. W. M. Henkes and C. J. HOOGENDOORN

The stability of method (ii) is much better. The
equations are discretized according to

—f’—:‘%;‘~h,=0 G=1,2,....J)
B —2h+ [+3 h,+, —h;_
M| —Z gL I-1
@)’ S AR 7Y
1
_ih]ﬂ,:o G=1200d=1)
gj+l_2gj+gj l+Prs n (M) +3f<gj+] —gi-1
(An)’? & /" 2An

_n(gl+m)hl] =0 (]:1,2,,.]—1)

Jo=0, hy=0, go=0, h; =0, g,=0. (13)

A system of 3(/J+1) non-linear algebraic equations
results, which is solved with the Newton—Raphson
method ; at each iterative level the system is linearized
and the resulting matrix equation is solved directly to
update the solution. Discretization (13) yields a sparse
Newton matrix (block tri-diagonal) in the matrix
equation. The one-sided discretization for f” in equa-
tions (13) is only first-order accurate; the use of the
second-order central discretization turned out to give
an almost singular Newton matrix.

4. CALCULATED SIMILARITY SOLUTIONS

Solutions of equations (12) have been determined
for air (Pr = 0.72).

Firstly the similarity solution for the situation with
variable wall temperature and non-stratified environ-
ment (m = 0, sgn (M) = 1) has been determined. Our
results in Fig. 1 confirm the results of Merkin [6];
the solution becomes singular if n] —0.999, and no
solution seems to exist for smaller values.

Secondly solutions have been determined for a fixed
wall temperature and a stratified environment

5 T
£7(0) n=-0.999

41 \. _
3 - -
2 .
al 0.8988 n~ 1

0 1

-5 0 5

(m= —1,sgn(M) =1). Analogously to Merkin’s
analysis for m = 0 in the limit # — oo, the behaviour
for m = —1 in the limit |n| - co can be found with
the transformation

n=|n|""%
S () = |n|~¥*F()
g(n) = G(H). (14)

Substitution of equations (14) into equations (9) leads
to

F”’+sgn(M)|: (sgn(n)+1 ’>F "

1 1
—i(sgn(n)+m)f'2]+G=0

G+ Prsgn (M)[ <sgn (n + n ‘>FG’

—sgn (n)(G+m)F’:| =0

=0 F=F=0,G=1

iow: FF=0G6=0. (15)

This transformation gives the following relations for
the wall-shear stress and wall-heat transfer

17 = Inl~"F(0)

g'(0) = |n]'"*G"(0). (16)

It follows from equations (15) that F and G become
independent of » in the limit |#| - o. For
sgn (M) = 1 the wall-shear stress and wall-heat trans-
fer are plotted in Fig. 2. Some velocity and tem-
perature profiles are given in Fig. 3. It is seen that the
whole n-range is free from singularities. As shown in
detail in Fig. 4, a region with small backflow and
temperature deficit is found in the outer part of the
boundary layer in a stably stratified environment

4 T
270 n = —0.999
3 \ ~
2| ; -
1 ; .
: ~0.5242 n'/4

-1 !

-5 0 5

FiG. 1. Wall-shear stress (a) and wall-heat transfer (b) for variable wall and fixed environment temperature
(m=0,sgn(M) = 1).
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FIG. 2. Wall-shear stress (a) and wall-heat transfer (b) for fixed wall and variable environment temperature
(m=—1,sgn (M) = 1).
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FiG. 3. Velocity (a) and temperature (b) profiles for fixed wall and variable environment temperature
(m=—1,sgn(M) =1).
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Fi6. 4. Backflow in boundary layer for stably stratified
environment (m = —1, sgn (M) = 1).

(n < 0). There is no backflow or temperature deficit
in an unstably stratified environment (n > 0). The
wall-shear stress and wall-heat transfer for
sgn (M) = —1 are given in Fig. 5. It is noted that in
the limit |n| — co, the solutions for sgn (M) = —1
with sgn(n) = +1 is identical to the solution for
sgn (M) = 1 with sgn(n) = F1. Increasing n from
—oo to 0 (unstable stratification) gives a zero wall-
heat transfer with a temperature identical to 1 every-
where, except in a small region at the outer edge, where
the temperature rapidly falls to the zero boundary
condition. As illustrated in Fig. 6, the zero boundary
condition for the velocity is satisfied in a small region
at the outer edge as well. Although the negative n-
branch for sgn (M) = —1 describes similarity solu-
tions of the boundary-layer equations, they cannot
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FiG. 5. Wall-shear stress (a) and wall-heat transfer (b) for fixed wall and variable environment temperature
(m=—1,sgn(M) = —1).

be part of the flow along the heated plate: the 5-
dependence of f’ and g does not vanish if 5 is
increased to infinity. This is required for the matching
of the boundary-layer solution (inner solution) with
the solution in the environment (outer solution)
within the Navier-Stokes description. On the
contrary, the velocity and temperature profiles in Fig.
7 show that this matching condition is satisfied for the
solutions of the positive n-branch (stable strati-

—0.0469 "—1/2

0.0 NG o=

f’min

-0.5 -

- i
1.05 L - 4

Fic. 8. Backflow in boundary layer for stably stratified

environment (m = —1, sgn (M) = —1).

fication). As for the stable stratification with
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m

sgn (M) = 1, a region with backflow is found in the
outer part of the boundary layer which is plotted
in Fig. 8. Approaching n ~ 0.6 shows an enormous
growth of f”(0), ¢’(0) and f},, which seems to
indicate the appearance of a singularity in the
sgn (M) = —1 branch.

FiG. 6. Velocity and temperature profile for fixed wall
temperature and unstably stratified environment (m = —1,

sgn(M)=—1,n=—1).

T T
/
/ /—\\
0 o
-1 S I
0 5 10 B 15
Fi1G. 7. Velocity and temperature profile for fixed wall
temperature and stably stratified environment (m = —1,

sgn(M)=—1,n=1).

5. MEANING OF THE SIMILARITY SOLUTIONS

For large Grashof numbers the Navier-Stokes solu-
tion along the vertical plate is described by boundary-
layer equations. These boundary-layer equations do
not hold in a small region, O(Gr~'?), at x = 0, where
the full Navier—Stokes equations have to be used. If
the temperature difference at x = 0 between wall and
environment is nonzero, it has to be checked by solv-
ing the Navier-Stokes equations whether the solution
in the O(Gr~""?) layer at x = 0 matches with Ostrach’s
similarity solution (n = 0). We verified this for a prob-
lem closely related to the vertical plate in an infinite
stratified environment, namely for the heated vertical
side in a square enclosure (for details see ref. [8]). If,
however, the temperature difference between the wall
and the environment at x = 0 is zero, the #n = 0 simi-
larity solution does not apply. Because a rising bound-
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ary layer at x = 0 requires that the wall temperature
is not below the environment temperature, the zero
temperature difference at x = 0 can only occur for an
unstably stratified environment. Similarity solutions
for this case indeed exist and are described by equa-
tions (9), with sgn (M) = 1and n > 0.

This implies that the other similarity solutions (the
sgn (M) = 1 class with n < 0 and the sgn (M) = —1
class with n > 0) cannot be the boundary-layer solu-
tions for small x. In order to check the meaning of
these similarity solutions we have solved (non-similar)
boundary-layer equations (2) for a stably stratified
environment. The n = 0 similarity solution was used
as a boundary condition at the initial x = 0. It was
tried to solve the discretized boundary-layer equations
in a single sweep, going from one x-station to the next
larger x-station. However, the numerical iteration
process failed to converge as soon as backflow
occurred at an x-station. The reason for this failure
seems to be clear: if backflow occurs, the boundary-
layer equations locally change from a parabolic
character to an elliptic character. This means that the
single-sweep marching numerical solution technique
has to be replaced by a repeated sweep procedure.
Due to the elliptic character of the solution of the
boundary-layer equations in a stably stratified
environment, the solution at the last x-station has to
be given as a boundary condition.

Hence, if the plate is semi-infinite the solution for
x - oo has to be known. We expect that the similarity
class sgn (M) = 1 with n < 0 forms that large x limit.
The coefficient n describes how fast the environment
temperature approaches the wall temperature for
increasing x. The value of N in equations (6) is unim-
portant in the limit x —» co. The non-similar boun-
dary-layer equations (2) have been solved for the
stable stratification

T, 1
AT x/xo+1

At the leading edge of the vertical plate (x = 0) the
similarity solution sgn(M)=1 with n=0 is
prescribed. At a large x-value the similarity solution
sgn (M) =1 with n= —1 is prescribed. Repeated
sweeps are made in the numerical procedure. The
calculated wall-heat transfer (Nusselt number) is
shown in Fig. 9. The Nusselt number is defined as

T-T,(0)
(=)

o(y/xo0) w'

0< x/xy < 00.

an

Nu= — (18)

Figure 9 shows that the non-similar solution smoothly
matches both similarity limits

¥\
lim x/xo | 0 NuGr''* = 0.3571 (—)

Xo

-3/2
lim x/xo — 00 NuGr'/* = 0.5592 (;f— + 1) . (19)
[

1.0 T T T T
SA /\simi!m'ity solution
T / m=-1, sgn(M)=1, n=0
(=]
K
R
R
3
< N
0.5} Zsimihrity solution 7
m=-1, sgn(M)=1, n=-1
| I 1 1
0% 1 2 3 4 3
xixq

Fic. 9. Wall-heat transfer in non-similar boundary layer
along semi-infinite vertical plate in stable stratification
T /AT = 1—1/(x/xo+1).

The environment temperature can cut the wall tem-
perature at a finite distance x,. In this case solving
the (non-similar) boundary-layer equations requires
a boundary condition at x, We expect that the
non-similar solution matches the similarity class
sgn (M) = —1 with >0 in the limit x - x,. To
check this, the non-similar boundary-layer equations
(2) have been solved for a linear, stable stratification

T, x
AT x,

o
N

x/xo € 1. 20)
At x =0 the similarity solution sgn (M) =1 with
n = 0 is prescribed. At x = x, the similarity solution
sgn(M)=—1 with n=1 is prescribed (using

= ~1/x,, N = 1). Actually only the ¥- and T-pro-
files have to be specified, and not the v-profile: u = 0
and T = T, at x,. The same problem was also solved
by Eichhorn [9] (with series expansions), by Chen and
Eichhorn [10] (with the local non-similarity approxi-
mation method) and by Venkatachala and Nath [11]
(with a finite difference numerical method). However,
none of these authors discuss the need for a boundary
condition at x = x, and the elliptic character of the
boundary-layer equations. The calculated wall-heat
transfer, velocity maximum and velocity minimum are
depicted in Fig. 10. This figure shows that the solution
smoothly matches the similarity solution for small x.
In contrast with our expectation, the solution does
not match the similarity solution for x — x,. In par-
ticular the wall-heat transfer behaves as

—1/4
lim x/x, L 0 NuGr'/4 = 0.3571 (%) . Q@D
0

But in the limit x - x, the wall-heat transfer does not
follow the similarity relation

limx/x,11 NuGr'/* = 0.7313 (1 - ;C’i) 22
0
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1.0 T 0.00
similarity solution
m=-—1, sgn(M)=1, n=0
Nu Gr'# _ Mmin
(8BATxp) 12
\
N
L ~
0.5 ~ - =0.05 =
™~ . similarity solution
m=—1, sgn(M)=~1,
~ N / n=1
N
~ similarity solution ——
X m=-1, sgn(M)=—1, n=1
0.0 L o —0.10 )
(a) 0.0 0.5 Xz 1.0 0.0 0.5 xxg 1.0 (p)
0.4
similarity solution
m=—1, sgn(M)=1, \
. Ymx | n=0 . \
(BATx) 2 N, \
/ \
/
02 / \ —
\
similarity solution\
m=-1, sga(M)=—1, n=1 \
0.0 1 \
0.0 0.5 xixg 1.0 (c)

F1G. 10. Wall-heat transfer (a), velocity minimum (b

) and velocity maximum (c) in non-similar boundary

layer along finite vertical plate in stable, linear stratification (7,,/AT = x/x,).

6. CONCLUSION

Solving Semenov’s differential equations for air,
describing all possible similarity solutions of the natu-
ral convection boundary layer equations, shows that
no singularity occurs in the positive M class for a fixed
wall and variable environment temperature. Simi-
larity solutions of the negative M class for an unstable
stratification are not usable because the solutions do
not smoothly match with the environment velocity
and temperature.

Regions with backflow and temperature deficit are
found in the similarity solutions for a stably stratified
environment. The boundary-layer equations change
from the parabolic to the elliptic type when regions
with backflow occur, and a single sweep marching
numerical technique to determine a non-similar solu-
tion has to be replaced by a multiple sweep technique.
Besides the solution at the first x-station, also the
solution at the last x-station has to be given as a
boundary condition.

The similarity solution for a constant wall and
environment temperature can be used to initiate the
(non-similar) boundary-layer calculation for a heated
plate with a sharp leading edge in a stably stratified
environment. The similarity class with positive M and

n > 0 gives the initial solution in the case where the
stratification is unstable and the wall and environment
temperature are equal at the leading edge. The simi-
larity class with positive M and n < 0 gives the solu-
tion in a stable stratification for large x. On the
contrary, if the environment temperature in a stable
stratification becomes equal to the wall temperature
at a finite distance x,, the solution close to x, does
not match the similarity solution of the negative M
class with n > 0.
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ECOULEMENT A COUCHE LIMITE DE CONVECTION NATURELLE LAMINAIRE, LE
LONG D’UNE PLAQUE CHAUDE VERTICALE, DANS UN ENVIRONNEMENT
STRATIFIE

Résumé—On détermine numériquement toutes les solutions de similitude des équations de convection
naturelle laminaire d’air a couche limite, pour une température de paroi fixée et d’environnement variable.
On trouve que la classe & M positif n’a pas la singularité trouvée par Merkin pour une température de
paroi variable et d’environnement fixé. Des solutions pour la classe & M négatif, pour une stratification
instable, dépend de la position du bord extérieur et sont inutilisables. Les solutions de similitude pour une
stratification stable montre des régions de retour. Néanmoins le calcul des solutions de non-similitudes des
équations de couche-limite le long d’une plaque chaude verticale avec un bord d’attaque effilé demande
que la solution soit connue 4 'extrémité de la plaque. La classe & M positif fournit la solution pour une
plaque semi-infinie. Si la température de I'environnement devient égale a celle de la paroi a une distance
finie x,, la solution non-similaire n’approche pas réguliérement la solution similaire de la classe & M négatif,

pres de x,.

LAMINARE NATURLICHE GRENZSCHICHTSTROMUNG ENTLANG EINER
BEHEIZTEN VERTIKALEN PLATTE IN GESCHICHTETER UMGEBUNG

Zusammenfassung—Die iiber Ahnlichkeitsbeziehungen aus den Grenzschichtgleichungen der laminaren
natiirlichen Konvektionsstromung gefundenen numerischen Losungen fiir Luft werden bei konstanter
Wand- und variabler Fluidtemperatur ermittelt. Es zeigt sich, daB die positive M-Klasse nicht die
Singularitit aufweist, welche von Merkin fiir die Strémung mit variabler Wand- und konstanter
Fluidtemperatur gefunden wurde. Die Ergebnisse der negativen M-Klasse fiir eine instabile Schichtung
héiingen von der Position der duBeren Kante ab und sind deshalb unbrauchbar. Die Ahnlichkeitsldsung
fiir die stabil geschichtete Strémung zeigt Regionen mit Rickstromung. Bei einer beheizten vertikalen
Platte mit einer scharfen Anstrémungskante setzt deshalb die Berechnung von Losungen, die sich nicht
iiber die Ahnlichkeitsbezichungen aus den Grenzschichtgleichungen ergeben, die Kenntnis der Losung
am Ende der Platte voraus. Die positive M-Klasse ergibt die Losung fiir die halbunendliche Platte.
Wenn die Fluidtemperatur in einem endlichen Abstand x, der Wandtemperatur entspricht, erreicht die
Losung, die nicht iiber die Ahnlichkeitsbeziechungen ermittelt wurde, nicht die Ahnlichkeitslosung der
negativen M-Klasse nahe x,.

JIAMUHAPHOE TEYEHME B ITOrTPAHUYHOM CJIOE Y HATPETOM BEPTHKAJILHON
TUIACTHHBI B YCJIOBUAX ECTECTBEHHOW KOHBEKIIMMA U CTPATUGHUKALIMHU
OKPYXAIOWEN CPE]IbI

Ammoranus—YHCIIEHHO MONy4eHK BCe ABTOMOJE/BHEIC PEUICHAS YPABHEHHH, ONHUCHIBAIONIHX JAMHHAD-
HOE TeYeHne BO3AYyXa B MOrPAHMYHOM CJIoE B YCIOBHAX €CTECTBEHHOH! KOHBEKLMH MPH NOCTOAHHOR TEM-
nepatype CTEHKM H TEPEMEHHOH TeMIepaType OKpyXalowed Cpelnl. HaiineHo, 4TO pellcHHE H3
NOJIOXMTELHOTO Kjlacca M He MMeeT CHHIY/ISPHOCTH, Kak 3T0 GhUIo ycTanoBjeHO MepkunoM i
chydas H3MeHsIowIelics TeMnepaTyphl CTEHOK H TOCTOSHHOH TeMmepaTyphl OKpyXalomei cpesl.
PellleHHs OTPHUATENBHOTO Kjacca M NpH HeycToHunBOR CTpaTHQHUKXAUMM 3aBHCAT OT MOJIOKCHHA
BHEIUHeH KpPOMKM H He MMeIoT (u3Hueckoro cmuicna. M3 asToMonenbHBIX pewenuit AN yCTORIHBOR
cTpaTHHKAUMH ClCayeT CymecTBoBanne obaacteil ¢ o6paTHeM TeuenHeM. [ToaToMy 1A HaXOKACHAA
ABTOMOJENbHBX pelleHMH ypaBHEHHIi NOTPAHHYHOTO CJIOA Y HArpeTodf BEpPTHKANLHOH IUIACTHHEI C
ocTpoif nepemneil kpoMxoil HeoGXomHMO, 4TOOR! GBLIO H3BECTHO pellieHHe JUIA Kpas IUIACTHHAL. TTono-
KHTebHBIR K1acC M CONEPKMT pelleHHe JUIA NogyorpaHHuenHo#t niacTaae:. Ilpn paBeHCTBe Temmepa-
TYp OKpyxaiolieli Cpeabl M CTCHOK Ha KOHEYHOM DPAacCTOSHHH X, HECABTOMOIEJILHOE DEIUEHHE He
CTPEMHTCA FIIAJKO K ABTOMOJEIBHOMY PEILICHHIO OTPHIATENLHOrO Kiacca M B6u3H x, .



