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Abstract-All similarity solutions of the laminar natural convection boundary-layer equations for air are 
numerically determined for a fixed wall and variable environment temperature. It is found that the positive 
A4 class does not have the singularity found by Merkin for a variable wall and fixed environment 
temperature. Solutions of the negative M class for an unstable stratification depend on the position of the 
outer edge and are unusable. The similarity solutions for a stable stratification show regions of backflow. 
Therefore, the calculation of non-similar solutions of the boundary-layer equations along a heated vertical 
plate with a sharp leading edge requires that the solution is known at the end of the plate. The positive M 
class provides such a solution for a semi-infinite plate. If the environment temperature becomes equal to 
the wall temperature at a finite distance x0, the non-similar solution does not smoothly approach the 

negative M class similarity solution close to x0. 

1. INTRODUCTION 

IF THE CHARACTERISTIC number of the natural con- 
vection flow, i.e. the Grashof number, is increased to 
infinity, the Navier-Stokes flow along a heated ver- 
tical plate becomes identical to the solution of the 
boundary-layer equations. If the environment is iso- 
thermal and stagnant, a coordinate transformation 
exists which simplifies the boundary-layer equations 
to ordinary differential equations. The solution of this 
system, which is a similarity solution of the boundary- 
layer equations, was numerically determined by 
Ostrach [l]. If the vertical plate is part of an enclosure, 
the environment of the plate (the core of the en- 
closure) will not be isothermal, but stratified. This 
stratification will be stable : the temperature increases 
with height. An unstable stratification is only of theo- 
retical interest ; it is a solution of the steady Navier- 
Stokes equations, but unsteady effects will cause a 
transition to a steady solution in which the strati- 
fication is broken up. 

Semenov [2] derived the system of ordinary differ- 
ential equations for all possible distributions of the 
wall and environment temperature leading to a simi- 
larity solution of the boundary-layer equations. Some 
solutions of Semenov’s system are already known in 
the literature ; Ostrach [l], giving the solution for a 
fixed wall and environment temperature, Sparrow and 
Gregg [3], giving part of the class with variable wall 
and fixed environment temperature, and Cheese- 
wright [4] and Yang et al. [5], giving part of the class 
with fixed wall and variable environment temperature. 
Recently Merkin [6] found that the similarity solution 
for a variable wall and fixed environment temperature 

becomes singular if a critical value of the parameter 
describing the wall temperature is exceeded. It is in- 
vestigated here whether such a singular behaviour is 
also found for a fixed wall and variable environment 
temperature. Further, the differential equations for 
the new class of similarity solutions are numerically 
solved. 

Once the similarity solutions have been determined, 
it has to be investigated in which part of the boundary 
layer they hold. Firstly, the solution must be match- 
able with the environment solution : the velocity and 
temperature profiles have to be independent of the 
position of the far outer edge of the boundary layer. 
Secondly, a similarity solution holds for small x (coor- 
dinate along the plate), if it is matchable to the solu- 
tion in a small region, O(Gr- ‘j2), at the leading edge 
of the plate, where boundary-layer equations do not 
apply, but Navier-Stokes equations have to be used. 
If this is not the case, the similarity solution found 
might be the boundary-layer solution for large n. To 
check this we also solved the full (non-similar) boun- 
dary-layer equations. 

When this paper was in preparation, a related paper 
by Kulkarni et al. [7] was published. They determined 
a similarity solution for a fixed wall temperature and 
a linear, stably stratified environment. The authors 
claimed to have found a new class of similarity solu- 
tions, but this class was already detected by Semenov 
[2]. Actually Semenov’s new class is more general, 
because the parameter describing the variation of the 
environment temperature can be any real number, 
whereas it has to be an integer in the description 
of Kulkami et al. The present paper determines the 
solutions of the new class for the whole range of 
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NOMENCLATURE 

f(a> similarity stream function u vertical velocity component 
F(rj) similarity stream function (large n V velocity component perpendicular to the 

formulation) plate 

9 gravitational acceleration X vertical coordinate 
g(q) similarity temperature x0 length scale 
G(tj) similarity temperature (large n Y coordinate perpendicular to, and 

formulation) beginning at, the plate. 
Gr Grashof number, gfiATxi/v* 

h f' 
j gridpoint numbering in the n-direction 

Greek symbols 

parameter describing whether the 
B coefficient of thermal expansion 

m 
environment temperature (m = 0) or 

rl similarity y-coordinate 

the wall temperature (m = - 1) is fixed 
li similarity Y-coordinate (large n 

M coefficient in the <-coordinate 
formulation, f = In1 ‘14q) 

n parameter describing the variation of the 
An gridsize in the q-direction 
v 

wall and/or environment temperature 
molecular kinematic viscosity 

N coefficient in the [-coordinate 
5 transformed x-coordinate, Mx+ N 

NM Nusselt number, Z 

density 
stream function. 

-xokV- ~m(O))/~~lwlA~ 

P pressure 
Pr Prandtl number Superscript 

s iterative level in the numerical procedure differentiation with respect to n (or 9). 

T temperature 

TC constant temperature Subscripts 
AT characteristic temperature difference, W wall condition 

T, - T, (0) co environment condition. 

parameters describing the variation of the strati- 
fication. By comparison with a non-similar boundary- 
layer calculation we will show that the new similarity 
solution for the stable, linear stratification does not 
fit in the boundary-layer flow pattern along the heated 
vertical plate with a sharp leading edge. This is not 
in line with Kulkarni et al., who suggest agreement 
between this similarity solution and some numerical 
and experimental results in literature. 

2. FLOW EQUATIONS 

The Navier-Stokes equations for a laminar, two- 
dimensional, steady, incompressible flow are 

g+e=o 
ay 

.&+,;$z -:dp+gfi(T_T,)+v 
P ax 

The Boussinesq approximation has been applied. This 
means that the density p is considered constant every- 
where, except in the temperature buoyancy term, 
where it is replaced by a linear dependence (constant 
coefficient of thermal expansion p) on the temperature 
difference T- T,. 

In the case where the characteristic number of 
the flow is very large (the Reynolds number in a 
forced convection flow, or the Grashof number 
Gr = gjATxi/v * in a natural convection flow), 
boundary layers appear along fixed walls. In the 
boundary layer the Navier-Stokes description can be 
simplified to boundary-layer equations 

c!+d”=o 
ax ay 

ar aT v a=T 
U~+vdy=~ay2. 

We are searching for solutions of this system that 
describe the natural convection boundary-layer flow 
along a heated vertical plate with a sharp leading edge 
in a stratified environment 
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x=0: u and T profile specified 

y=o: u = 0, T = T,,,(x) 

y+ca: u=O,T=T,(x). (3) 

For special distributions T,(x) and T,(x) a simi- 
larity solution of equations (2) exists. Such a similarity 
solution depends only on one coordinate q, instead of 
the two independent x-y coordinates. Recently 
Semenov [2] has derived the differential equations for 
all possible similarity solutions. The temperature is 
rewritten as 

T= (m+g(q))AZX”+T, (4) 

with 

q=o: 9(V) = 1, T, = (m + l)ATt” + T, 

r~ -+ 00 : g(q) = 0, T, = mAT5” + T, (5) 

where T, is a constant. The transformed coordinates 
in this expression are 

r=Mx+N (520) 

9 = (@$,M,y’4 (Mx+N)“‘-‘“~~. (6) 

.A stream function is introduced as 

$ = (?e!$)‘i’ 5”+3”4f(rl) (7) 

which defines the u- and v-velocities as 

( n-l 
X - -pf'-Ff . 

> 
(8) 

Substitution of these transformation expressions into 
equations (2) yields the following ordinary differential 
equations for f and g : 

f"'+sgn(M) yfftJ-TfJ* 
[ 1 +g=~ 

9”fPrsgnW) Tfgr-n(g+m)fJ 
[ 1 =o 

tJ=o: f=f'=O, g=l 

?J-+co: f'=O, g = 0. (9) 

Special situations are m = 0, for the non-stratified 
environment, and m = - 1, for the fixed wall tem- 
perature situation. The environment is stably strati- 

fied if dT,/dx > 0, hence mMn > 0. The branch with 
sgn (M) = - 1 was discovered by Semenov. 

Solutions of equations (9) have been determined by 
Ostrach [1] (m = 0, sgn (M) = 1, n = 0), Sparrow and 
Gregg [3] (m = 0, sgn (M) = 1, limited n-range), 
Cheesewright [4] and Yang et al. [5] (m = - 1, 
sgn (M) = 1, limited n-range) and Merkin [6] (m = 0, 
sgn (M) = 1, whole n-range). No solutions are known 
for the whole n-range with m = - 1 and for 
sgn (M) = - 1 : these solutions are given here. 

3. NUMERICAL METHOD 

Two methods to solve the ordinary differential 
equations (9) are described : (i) the shooting method 
with explicit integration, and (ii) the direct method. 
The outer edge of the boundary layer is numerically 
taken at the finite distance qW. The region 0 < 4 < q, 
is covered with the equidistantly spaced gridpoints ‘I, 
(.j=O,l,..., J). 

Method (i) performs an explicit integration from 
the wall to the outer edge, finding the solution at j + 1 
from a Taylor expansion around j 

where Aq is the gridsize. The derivatives f "', 9" and 
9”’ in this expression follow from equations (9). The 
remaining derivatives are obtained by Taylor expan- 
sions similar to equation (10). The integration can be 
started at the wall when the values f (0), f ‘(0), f “(0) 
g(0) and g’(0) are known. The values f (0), f ‘(0) and 
g(0) are given as boundary conditions, but f”(0) 
and g’(0) have to be guessed. Repeated integrations 
(shootings) are required to determine f “(0) and g’(0) 
such that the boundary conditions for f’ and g at the 
outer edge qrn are satisfied. The iterative updating 
of f’(0) and g’(0) is performed with the Newton- 
Raphson method, requiring the numerical evaluation 
of 

afk) afh) 
a'=ag'o' a2=af”(o>, 

a9h) a9h) 
a3 =ag’(o> a4 = af”(o> (11) 

f “(0) and g’(0) at the new iterative level s follow from 
the old level s - 1 according to 

f’(L) = f’“-‘(?m)+(9’S(0)-9’S-‘(O))a, 

+(f”“(O)-f”“-‘(O))a, 

9(rlco) = s’-‘(?m)+(9’YO)-9’~~‘(0))% 

+(f”“(o)-f”“-‘(0))n4. (12) 

This Newton-Raphson process converges with a 
quadratic speed. The explicit integration (10) turned 
out to be very unstable ; small deviations in the solu- 
tion for f ““(0) and g’“(O) can lead to very large devi- 
ations in f “(qe) and gs(qe). 



150 R. A. W. M. HENKES and C. J. HOOGENDOORN 

The stability of method (ii) is much better. The 
equations are discretized according to 

L-f;-, 
---,=o 

A? 
(j= 1,2 )...) J) 

5+1_2hj+hj_, 

(A$’ 
+sgn(~) ~~,h,,~-h,-~ 

i 2Arl 

-+; 1 +g,=O (j=1,2 )...) J-1) 

.9j+l -2gj +9j- I &I) 2 + Pr sgn (M) Ff, ‘j+ &,“- ’ 

-n(s, +mv, 1 =o (j= 1,2,...,J-1) 

fO=O, hO=O, gO=o, h,=O, gJ=o. (13) 

A system of 3(J+ 1) non-linear algebraic equations 
results, which is solved with the Newton-Raphson 
method ; at each iterative level the system is linearized 
and the resulting matrix equation is solved directly to 
update the solution. Discretization (13) yields a sparse 
Newton matrix (block tri-diagonal) in the matrix 
equation. The one-sided discretization for f’ in equa- 
tions (13) is only first-order accurate ; the use of the 
second-order central discretization turned out to give 
an almost singular Newton matrix. 

4. CALCULATED SIMILARITY SOLUTIONS 

Solutions of equations (12) have been determined 
for air (Pr = 0.72). 

Firstly the similarity solution for the situation with 
variable wall temperature and non-stratified environ- 
ment (m = 0, sgn (M) = 1) has been determined. Our 
results in Fig. 1 confirm the results of Merkin [6]; 
the solution becomes singular if n 1 -0.999, and no 
solution seems to exist for smaller values. 

Secondly solutions have been determined for a fixed 
wall temperature and a stratified environment 

(m = - 1, sgn (M) = 1). Analogously to Merkin’s 
analysis for m = 0 in the limit n -+ co, the behaviour 
for m = - 1 in the limit InI + co can be found with 
the transformation 

f(v) = lnl-3’4m 
g(v) = G(?). (14) 

Substitution of equations (14) into equations (9) leads 
to 

V+sgn(M)[i(sgn(n) +A)PP’ 

G”+Prsgn(M)[i(sgn(n) +$)FG’ 

-sgn(n)(G+m)F’ 
I 

= 0 

rj’=O: P=F’=O,G=l 

7-a: F’=O,G=O. (15) 

This transformation gives the following relations for 
the wall-shear stress and wall-heat transfer 

f”(0) = (n( - “4F”(0) 

g’(0) = InI “4G’(0). (16) 

It follows from equations (15) that F and G become 
independent of n in the limit InI + co. For 
sgn (M) = 1 the wall-shear stress and wall-heat trans- 
fer are plotted in Fig. 2. Some velocity and tem- 
perature profiles are given in Fig. 3. It is seen that the 
whole n-range is free from singularities. As shown in 
detail in Fig. 4, a region with small backflow and 
temperature deficit is found in the outer part of the 
boundary layer in a stably stratified environment 

-I- 4 

g ‘(0) n = -0.999 

3 \ 

2 

1 

r 

I 

0 

-1 tII4T.L +.5242 .I’4 

1 

-5 0 
n 5 

FIG. 1. Wall-shear stress (a) and wall-heat transfer (b) for variable wall and fixed environment temperature 
(m = 0, sgn (M) = 1). 
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FIG. 2. Wall-shear stress (a) and wall-heat transfer (b) for fixed wall and variable environment temperature 
(m= -l,sgn(M)=l). 

0.c 

g’(O) 

-0.5 

\ 

10 

0.6 

0.0 

FIG. 3. Velocity (a) and temperature (b) profiles for tixed wall and variable environment temperature 
(m= -l,sgn(M)= 1). 

0.00 (n < 0). There is no backflow or temperature deficit 
in an unstably stratified environment (n > 0). The 

f,, wall-shear stress and wall-heat transfer for 
sgn (M) = - 1 are given in Fig. 5. It is noted that in 
the limit JnJ --t co, the solutions for sgn (M) = - 1 
with sgn (n) = f 1 is identical to the solution for 

-O.Ol- sgn (M) = 1 with sgn (n) = T 1. Increasing n from 
-cc to 0 (unstable stratification) gives a zero wall- 
heat transfer with a temperature identical to 1 every- 

=. 
where, except in a small region at the outer edge, where 
the temperature rapidly falls to the zero boundary 

\ \ 
condition. As illustrated in Fig. 6, the zero boundary 

-0.02 
-10 -5 0 

condition for the velocity is satisfied in a small region 
n at the outer edge as well. Although the negative n- 

FIG. 4. Backflow in boundary layer for stably stratified branch for sgn (M) = - 1 describes similarity solu- 
environment (m = - 1, sgn (M) = I). tions of the boundary-layer equations, they cannot 
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0.0 ‘--,- I 

-0.0104 InIl’ ; 

g ‘(0) 

-0.5 - 

0.5 I 

-5 0 5 
-1.0 I 

n -5 0 n 5 

RG. 5. Wall-shear stress (a) and wall-heat transfer (b) for fixed wall and variable environment temperature 
(m=-l,sgn(M)= -1). 

be part of the flow along the heated plate: the ‘I- 
dependence of f’ and g does not vanish if VJ is 
increased to infinity. This is required for the matching 
of the boundary-layer solution (inner solution) with 
the solution in the environment (outer solution) 
within the Navier-Stokes description. On the 
contrary, the velocity and temperature profiles in Fig. 
7 show that this matching condition is satisfied for the 
solutions of the positive n-branch (stable strati- 
fication). As for the stable stratification with 
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/ 
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OO 
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5 l( 

\ 

----7 14.8 14.9 1 
T 

FIG. 6. Velocity and temperature profile for fixed wall 
temperature and unstably stratified environment (m = - I, 

sgn(M)= -I,n= -1). 

‘n 

: 
0 

0 5 10 
+i 

15 

FIG. 7. Velocity and temperature profile for fixed wall 
temperature and stably stratified environment (m = - 1, 

sgn(M) = -1,n = I). 

f’min 

-0.5 - 

-1.0; I 
5 n 10 

FIG. 8. Backflow in boundary layer for stably stratified 
environment (m = - 1, sgn (M) = - 1). 

sgn (M) = 1, a region with backflow is found in the 
outer part of the boundary layer which is plotted 
in Fig. 8. Approaching n - 0.6 shows an enormous 
growth of ,p”(O), g’(0) and f,&, which seems to 
indicate the appearance of a singularity in the 
sgn (M) = - 1 branch. 

5. MEANING OF THE SIMILARITY SOLUTIONS 

For large Grashof numbers the Navier-Stokes solu- 
tion along the vertical plate is described by boundary- 
layer equations. These boundary-layer equations do 
not hold in a small region, 0(Gr-‘12), at x = 0, where 
the full Navier-Stokes equations have to be used. If 
the temperature difference at x = 0 between wall and 
environment is nonzero, it has to be checked by solv- 
ing the Navier-Stokes equations whether the solution 
in the O(Gr- ‘12) layer at x = 0 matches with Ostrach’s 
similarity solution (n = 0). We verified this for a prob- 
lem closely related to the vertical plate in an infinite 
stratified environment, namely for the heated vertical 
side in a square enclosure (for details see ref. [8]). If, 
however, the temperature difference between the wall 
and the environment at x = 0 is zero, the n = 0 simi- 
larity solution does not apply. Because a rising bound- 
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ary layer at x = 0 requires that the wall temperature 
is not below the environment temperature, the zero 
temperature difference at x = 0 can only occur for an 
unstably stratified environment. Similarity solutions 
for this case indeed exist and are described by equa- 
tions (9), with sgn (M) = 1 and n > 0. 

This implies that the other similarity solutions (the 
sgn (M) = 1 class with n < 0 and the sgn (M) = - 1 
class with n > 0) cannot be the boundary-layer solu- 
tions for small x. In order to check the meaning of 
these similarity solutions we have solved (non-similar) 
boundary-layer equations (2) for a stably stratified 
environment. The n = 0 similarity solution was used 
as a boundary condition at the initial x = 0. It was 
tried to solve the discretized boundary-layer equations 
in a single sweep, going from one x-station to the next 
larger x-station. However, the numerical iteration 
process failed to converge as soon as backflow 
occurred at an x-station. The reason for this failure 
seems to be clear : if backflow occurs, the boundary- 
layer equations locally change from a parabolic 
character to an elliptic character. This means that the 
single-sweep marching numerical solution technique 
has to be replaced by a repeated sweep procedure. 
Due to the elliptic character of the solution of the 
boundary-layer equations in a stably stratified 
environment, the solution at the last x-station has to 
be given as a boundary condition. 

Hence, if the plate is semi-infinite the solution for 
x --t cc has to be known. We expect that the similarity 
class sgn (M) = 1 with n < 0 forms that large x limit. 
The coefficient n describes how fast the environment 
temperature approaches the wall temperature for 
increasing x. The value of N in equations (6) is unim- 
portant in the limit x + co. The non-similar boun- 
dary-layer equations (2) have been solved for the 
stable stratification 

T 
,-,=1-h O<X/X,<~. (17) 

At the leading edge of the vertical plate (x = 0) the 
similarity solution sgn (M) = 1 with n = 0 is 
prescribed. At a large x-value the similarity solution 
sgn (M) = 1 with n = - 1 is prescribed. Repeated 
sweeps are made in the numerical procedure. The 
calculated wall-heat transfer (Nusselt number) is 
shown in Fig. 9. The Nusselt number is defined as 

Nu = - (18) 

m=-1, sgn(M)=1, PI=-1 

0.0 
( 

I I I I 
0 1 2 3 4 

x/x0 

FIG. 9. Wall-heat transfer in non-similar boundary layer 
along semi-infinite vertical plate in stable stratification 

T,/AT= 1-1/(x/x0+1). 

The environment temperature can cut the wall tem- 
perature at a finite distance x0. In this case solving 
the (non-similar) boundary-layer equations requires 
a boundary condition at x0. We expect that the 
non-similar solution matches the similarity class 
sgn(M) = - 1 with n > 0 in the limit x+x0. To 
check this, the non-similar boundary-layer equations 
(2) have been solved for a linear, stable stratification 

Tm x 
bT = ; 0 < x/x0 6 1. 

0 
(20) 

At x = 0 the similarity solution sgn (M) = 1 with 
n = 0 is prescribed. At x = x0 the similarity solution 
sgn(M) = - 1 with n = 1 is prescribed (using 
M = - l/x0, N = 1). Actually only the u- and T-pro- 
files have to be specified, and not the u-profile : u = 0 
and T = T, at x0. The same problem was also solved 
by Eichhorn [9] (with series expansions), by Chen and 
Eichhom [lo] (with the local non-similarity approxi- 
mation method) and by Venkatachala and Nath [l l] 
(with a finite difference numerical method). However, 
none of these authors discuss the need for a boundary 
condition at x = x0 and the elliptic character of the 
boundary-layer equations. The calculated wall-heat 
transfer, velocity maximum and velocity minimum are 
depicted in Fig. 10. This figure shows that the solution 
smoothly matches the similarity solution for small x. 
In contrast with our expectation, the solution does 
not match the similarity solution for x + x0. In par- 
ticular the wall-heat transfer behaves as 

Figure 9 shows that the non-similar solution smoothly 
matches both similarity limits 

limx/x, JO NuGrri4 = 0.3571 $ 0 
- 114 

- 3,2 
limxlx, + cc NuGr114 = 0.5592 . (19) 

0 
- I,4 

limx/x, JO Nu Gr’14 = 0.3571 : . (21) 

But in the limit x --) x0 the wall-heat transfer does not 
follow the similarity relation 

. (22) 
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’ (b) 
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O.( 
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similarity solution ’ 

m=-1, sgn(M)=l, , I 

/ \ 

. // \ 

f--I 

A, 
similarity soI~tion 

m=-1, sgn(M)=-1, n=l \ 

I \u 
1 0.5 XIX, 1.0 (c) 

FIG. 10. Wall-heat transfer (a), velocity minimum (b) and velocity maximum (c) in non-similar boundary 
layer along finite vertical plate in stable, linear stratification (T,,/AT = x/x0). 

6. CONCLUSION 

Solving Semenov’s differential equations for air, 
describing all possible similarity solutions of the natu- 
ral convection boundary layer equations, shows that 
no singularity occurs in the positive M class for a fixed 
wall and variable environment temperature. Simi- 
larity solutions of the negative M class for an unstable 
stratification are not usable because the solutions do 
not smoothly match with the environment velocity 
and temperature. 

Regions with backflow and temperature deficit are 
found in the similarity solutions for a stably stratified 
environment. The boundary-layer equations change 
from the parabolic to the elliptic type when regions 
with backflow occur, and a single sweep marching 
numerical technique to determine a non-similar solu- 
tion has to be replaced by a multiple sweep technique. 
Besides the solution at the first x-station, also the 
solution at the last x-station has to be given as a 
boundary condition. 

The similarity solution for a constant wall and 
environment temperature can be used to initiate the 
(non-similar) boundary-layer calculation for a heated 
plate with a sharp leading edge in a stably stratified 
environment. The similarity class with positive M and 

n > 0 gives the initial solution in the case where the 
stratification is unstable and the wall and environment 
temperature are equal at the leading edge. The simi- 
larity class with positive M and n < 0 gives the solu- 
tion in a stable stratification for large x. On the 
contrary, if the environment temperature in a stable 
stratification becomes equal to the wall temperature 
at a finite distance x0, the solution close to x0 does 
not match the similarity solution of the negative M 
class with n > 0. 
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ECOULEMENT A COUCHE LIMITE DE CONVECTION NATURELLE LAMINAIRE, LE 
LONG D'UNE PLAQUE CHAUDE VERTICALE, DANS UN ENVIRONNEMENT 

STRATIFIE 

R6sum6----On d&ermine num6riquement toutes les solutions de similitude des 6quations de convection 
naturelle laminaire d'air ~ couche limite, pour une temp6rature de paroi fix6e et d'environnement variable. 
On trouve que la classe ~ M positif n'a pas la singularit6 trouv6e par Merkin pour une temp6rature de 
paroi variable et d'environnement fix6. Des solutions pour la classe ~t M n6gatif, pour une stratification 
instable, d6pend de la position du bord ext6rieur et sent inutilisables. Les solutions de similitude pour une 
stratification stable montre des r6gions de retour. N6anmoins le calcul des solutions de non-similitudes des 
6quations de couche-limite le long d'une plaque chaude verticale avec un bord d'attaque effil6 demande 
que la solution soit connue fi l'extr6mit6 de la plaque. La classe fi M positif fournit la solution pour une 
plaque semi-infinie. Si la temp6rature de l'environnement devient 6gale fi celle de la paroi fi une distance 
finie x0, la solution non-similaire n'approche pas r6guli6rement la solution similaire de la classe fi M n6gatif, 

pr6s de x0. 

LAMINARE NATORLICHE GRENZSCHICHTSTROMUNG ENTLANG EINER 
BEHEIZTEN VERTIKALEN PLATTE IN GESCHICHTETER UMGEBUNG 

Zt~ammenfassung--Die /ibcr )~hnlichkeitsbeziehungen aus den Grenzschichtgleichungen der laminaren 
natiirlichen Konvektionsstr/~mung gefundenen numerischen L6sungen fiir Luft werden bci konstanter 
Wand- und vadabler Fluidtemperatur ermittelt. Es zcigt sich, daft die positive M-Klasse nicht die 
Singularifiit aufweist, welche von Merkin fiir die Str6mung mit variahler Wand- und konstanter 
Fluidtemperatur gefunden wurde. Die Ergebnisse der negativen M-Klasse fiir eine instabile Schichtung 
h/ingen vonder  Position der/iuBeren Kante ab und sind deshalb unbrauchbar. Die ~hnlichkeitsl6sung 
fiir die stabil geschichtete Str6mung zeigt Regionen mit Riickstr6mung. Bei einer beheizten vertikalen 
Platte mit einer scharfen Anstr6mungskante setzt deshalb die Berechnung von L6sungen, die sich nicht 
iiber die ~,hnlichkeitsbeziehungen aus den Grenzschichtgleichungen ergeben, die Kenntnis der Lfsung 
am Ende der Platte voraus. Die positive M-Klasse ergibt die L6sung f/Jr die halbunendliche Platte. 
Wenn die Fluidtemperatur in einem endlichen Abstand x0 der Wandtemperatur entspricht, erreicht die 
L6sung, die nicht iiber die .~hnlichkeitsbeziehungen ermittelt wurde, nicht die ,~hnlichkeitsl6sung der 

negativen M-Klasse nahe x0. 

.rlAMHHAPHOE TEqEHHE B HOFPAHHqHOM C.rlOE ~ HAFPETOI~I BEPTHKAYlbHOI~I 
FUIACTHHbI B ~CJIOBH~IX ECTECTBEHHOI~I KOHBEK~HH H CTPATH~HKAI~HH 

OKPY)KAIOI~EI~I CPE,~bl 

~FIHIImI~LIHc.JIeHHO noYIy~leHbl BCC aBTOMO,~eJIbHb/e pemeHHB ypaBHeHHi~ OnHCblBalO~ JIaMHHap- 
HOe TeqeHHe so3~lyxa B UOrDaHHqHOM CHOe B yCHOBKiiX ~'~ffrBeHHO~ EOHBeEId~H rlpH rloc'rOJiHHOfi TCM- 
IIL~TypC C'reHKH H nepCMeHHOfl TeMHepaType oxpyxammei l  cpe~u. HatLaeHo, qTO pemeHHe H3 
nOHO~TeHbHOrO lolacca M He HM~T CHHryH~DHOCTH, KaE 3TO 6bIHO yc'raHOBH~IO MepEHHOM ~IJI~ 
cJiyqali H3MeHJilOIRei~Ci TeMnepaTypu creHox H lIOCTOliHHOi~ TeMnepaTypu o~pyxa~omeit c p e ~ .  
PemeHHR oTpHuaTeJIbHOFO Enac~ M npH Heycrofl~n~oti cTpaTx~bmKamm 3anac~rr OT rloJioxeHi~l 
BHeUlHel~ KpOMEH H He 14MelOT (~I43HqCClCOFO CMI~CHa. H3 aBTOMO~eJIbHblX pellleHHl~ ~-I~ yCToiiqHBO~ 
crpaTx~Hxa~H cne~VCT CyII~CCTBOBaHHe o6nacrcfl c o6paTHUtM 'I'CqOHHeM. l"~O3tYoMy ~ Haxox~eHHJl 
aBTOMO~em,Hb/X pemeHHli ypanHeHSfl norpaml~Horo cJ~OX y HarpeToit BClaTnXa~bHOli n~acrm~ c 
o~rpofi iiepe~Hefl EpoMEofl H~O6XO~[,IMO, qTO6bl 6l~Lrlo H3BOL-"rHO p~meHHe ~ lq~q ILrlaCTHH~. I'IoHo- 
XHTe~IbHbII~ l~acc  M Co~ep~HT pcmeHHe +~H~i noJlyorpam~eHHOl~ IuIaCTHH~I. IIpH paBeHL-'TBe TeMnepa- 
Typ o[py~a~omeii cpe~u H CTeHO~ Ha EOHeqllOM paCCTO~HH~ X o He, aBTOMO./~e.rlbHOC pemeHHe He 

CTDeMI, ITC~I ryla,/~o !( aBTOMO,/~e.rlbHOMy pemeumo OTpmtaxe~n, Horo rnacca M B6JIH3H X 0 . 


